CHROM. 15,862

Note

Thin-layer chromatographic separation and spectra of oxygenated benzo[a]pyrene derivatives in dichloromethane

C. R. RAHA
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 42nd and Dewey Avenue, Omaha, NE 68105 (U.S.A.)
(Received March 6th, 1983)

Benzo[a]pyrene ($\mathrm{B} a \mathrm{P}$), a polycyclic aromatic hydrocarbon found in our environment, induces tumors in experimental animals and is implicated in human cancer. $\mathrm{B} a \mathrm{P}$ requires metabolic activation for carcinogenicity and produces oxygenated derivatives ${ }^{1}$. We describe a thin-layer chromatographic (TLC) method as a substitute for expensive high-performance liquid chromatography ${ }^{7}$ and time-consuming paper chromatography methods ${ }^{2,3}$. This TLC method separates $\mathrm{B} a \mathrm{P}-7,8$-dihydrodiol, the precursor of $\mathrm{B} a \mathrm{P}-7,8$-dihydrodiol 9,10 -epoxide (BPDE), which is the ultimate carcinogen of $\mathrm{B} a \mathrm{P}^{4}$, from other oxygenated $\mathrm{B} a \mathrm{P}$ derivatives. We also discuss then use of dichloromethane, which extracts smaller amounts of interfering substances from TLC plates and thereby facilitates mass spectrometric examination of the metabolites.
$\mathrm{B} a \mathrm{P}$ (Aldrich, Milwaukee, WI, U.S.A.) was crystallized ${ }^{5,6}$. Oxygenated $\mathrm{B} a \mathrm{P}$ derivatives (through Dr. David G. Longfellow, NCI Chemical Repository of the IIT Research Institute, Chicago, IL, U.S.A.) were used as received.

Milligram amounts of the substances were dissolved in 10 ml of dichloromethane. $\mathrm{B} a \mathrm{P}$-cis- and trans-4,5-dihydrodiols required 30 ml of warm solvent, while $\mathrm{B} a \mathrm{P}-7$, trans-8,9-triol called for 100 ml . These solutions were then diluted (Table I) and the UV spectra were recorded between 410 and 250 nm with a Cary 15 UV-VIS spectrophotometer.

Silica gel plates (UV-254, Brinkman Instruments, Westbury, NY, U.S.A.) were used in an ascending direction in Shandon tanks. The synthetic samples were applied either as spots (singles) or as $3-\mathrm{cm}$ wide streaks (mixtures). They were dried (nitrogen) and developed in the respective solvents for at least 1 h (Table II). The fluorescence of wet plates and the R_{F} values of the substances were noted under both $360-\mathrm{nm}$ and 254-nm UV lamp. BaP-4,5-dihydrodiols do not fluoresce under 360 nm , but rather appear as dark spots under a 254 -nm UV-lamp. When the same plate was run in more than one solvent it was dried in a vacuum oven at room temperature for 15 min and then developed in the next solvent.

For recovery, UV absorbance of trans-BaP-4,5-dihydrodiol (highly polar) was recorded. The solution was concentrated, applied to a $1-\mathrm{cm}$ area, dried, scraped off, extracted with dichloromethane and concentrated. The spectrum was then recorded to determine recovery.

For mass spectral determination, an AEI MS-9 instrument with a direct inlet probe at $220^{\circ} \mathrm{C}$ was used.

TABLE I
UV SPECTRA OF OXYGENATED BENZO[$a]$ PYRENE DERIVATIVES
Compound ($\mu \mathrm{g} / \mathrm{ml} \quad$ Wavelength (nm) (absorbance)
dichloromethane with
which the spectra
were taken)

Benzo $[a]$ pyrene (BaP) $\quad 280(0.11), 287(0.189), 293(0.12), 299(0.26), 310(0.005), 350(0.06), 357(0.05)$,	
(1.36)	$367(0.118), 376(0.065), 380(0.1), 387(0.14), 400(0.009), 404(0.02)$.

Phenols
1-OH-BaP (1.19)

2-OH-BaP (1.28)

3-OH-BaP

4-OH-BaP
(1.05)
$5-\mathrm{OH}-\mathrm{B} a \mathrm{P}$
(1.0)

6-OH-BaP
$7-\mathrm{OH}-\mathrm{B} a \mathrm{P}$
(2.0)

8-OH-BaP (1.57)

9-OH-BaP
265 (0.175), $269(0.19), 282(0.105), 289$ (0.158), 294 (0.128), $300(0.2), 320$ (0.015), $350(0.03), 378(0.11), 384(0.1), 388(0.11), 398(0.119), 410(0.035)$ $10 \mu \mathrm{~g} / \mathrm{ml}$ at 398 nm .

274 (0.191), 283 (0.16), 289 (0.178), 299 (0.122), 305 (0.138), 325 (0.021), 353 (0.068), $360(0.061), 371(0.111), 379(0.078), 383(0.09), 391(0.108), 405(0.02)$, 410 (0.03)
$11.85 \mu \mathrm{~g} / \mathrm{ml}$ at 391 nm .
$265(0.13), 270(0.149), 278(0.059), 280(0.062), 293(0.105), 300(0.078), 307$ (0.145), 320 (0.008), 363 (0.065), 370 (0.05), $380(0.1), 390$ (0.041), 397 (0.07), 410 (0.021)
$14.28 \mu \mathrm{~g} / \mathrm{ml}$ at 397 nm .
269 (0.295), 280 (0.138), 290 (0.152), 295 (0.142), 302 (0.18), 310 (0.038), 336 (0.035), 345 (0.04), 355 (0.08), $360(0.08), 373(0.118), 380(0.1), 387(0.105), 395$ (0.102), 405 (0.05), $410(0.055)$ $10.29 \mu \mathrm{~g} / \mathrm{ml}$ at 395 nm .
267 (0.195), 275 (0.12), 277 (0.125), 284 (0.105), 291 (0.165), 296 (0.125), 304 (0.185), $315(0.02), 355(0.058), 367(0.07), 376(0.091), 390(0.078), 396(0.088)$, 403 (0.04), 407 (0.092)
$11.36 \mu \mathrm{~g} / \mathrm{ml}$ at 396 nm .
268 (0.295), 276 (0.181), 282 (0.208), 285 (0.199), 293 (0.318), 297 (0.24), 305 (0.41), 315 (0.048), $370(0.12), 378(0.138), 388(0.185), 403(0.155), 410(0.171)$ $12.75 \mu \mathrm{~g} / \mathrm{ml}$ at 388 nm .

263 (0.422), 269 (0.51), 285 (0.258), 293 (0.43), 297 (0.331), 304 (0.632), 320 (0.04), 358 (0.155), 364 (0.14), 376 (0.288), 387 (0.172), 398 (0.299), 410 (0.07) $6.68 \mu \mathrm{~g} / \mathrm{ml}$ at 398 nm .
$160(0.372), 265(0.368), 270(0.388), 274(0.386), 278(0.412), 288(0.308), 291$ (0.321), 303 (0.268), $306(0.271)$, 331 (0.045$), 336(0.051), 342(0.049), 354$ (0.129), 359 (0.112), 372 (0.22), 378 (0.141), 391 (0.22), 403 (0.02) $7.13 \mu \mathrm{~g} / \mathrm{ml}$ at 391 nm .
263 (0.33), 270 (0.422), 276 (0.315), 288 (0.438), 298 (0.239), 304 (0.305), 315 (0.028), $361(0.172), 367(0.129), 379(0.279), 388(0.1), 393(0.149), 405(0.03)$ $6.09 \mu \mathrm{~g} / \mathrm{ml}$ at 379 nm .

266 (0.285), 277 (0.175), 280 (0.179), 285 (0.161), 292 (0.295), 297 (0.23), 304 $(0.46), 315(0.045), 335(0.014), 360(0.096), 367(0.088), 379(0.179), 388(0.11)$, $400(0.181), 405(0.1)$ $12.29 \mu \mathrm{~g} / \mathrm{ml}$ at 379 nm .

TABLE I (continued)

Compound ($\mu \mathrm{g} / \mathrm{ml}$ dichloromethane with which the spectra were taken)	Wavelength (nm) (absorbance)
$\begin{aligned} & 11-\mathrm{OH}-\mathrm{B} a \mathrm{P} \\ & (2.3) \end{aligned}$	$\begin{aligned} & 260(0.385), 269(0.61), 282(0.23), 292(0.32), 297(0.286), 303(0.355), 315(0.05), \\ & 330(0.021), 364(0.16), 368(0.138), 377(0.223), 380(0.219), 383(0.242), 388 \\ & (0.148), 393(0.2), 405(0.045) \\ & 9.50 \mu \mathrm{~g} / \mathrm{ml} \text { at } 383 \mathrm{~nm} . \end{aligned}$
$\begin{aligned} & 12-\mathrm{OH}-\mathrm{B} a \mathrm{P} \\ & (2.82) \end{aligned}$	```262 (0.351), 269 (0.399), 275 (0.335), 289 (0.462), 293 (0.461), 298(0.528), 310 (0.1), 320 (0.032), 360 (0.132), 365 (0.13), 377 (0.258), 387 (0.178), 399 (0.265), 405 (0.135) 10.93 \mu\textrm{g}/\textrm{ml}\mathrm{ at }377\textrm{nm}.```
Diones BaP-4,5-dione (2.73)	$\begin{aligned} & 260(0.451), 267(0.658), 271(0.662), 275(0.8), 286(0.208), 295(0.048), 305 \\ & (0.05), 312(0.072), 315(0.078), 320(0.096), 327(0.125), 331(0.119), 337(0.14), \\ & 348(0.108), 352(0.1), 355(0.05) \\ & 19.5 \mu \mathrm{~g} / \mathrm{ml} \text { at } 337 \mathrm{~nm} . \end{aligned}$
BaP-1,6-dione (13.6)	$\begin{aligned} & 250(0.891), 253(0.93), 257(0.19), 260(0.93), 287(0.192), 290(0.191), 295(0.15) \text {, } \\ & 302(0.162), 317(0.091), 410(0.455) \\ & 83.95 \mu \mathrm{~g} / \mathrm{ml} \text { at } 302 \mathrm{~nm} . \end{aligned}$
$\begin{aligned} & \text { BaP-6,12-dione } \\ & \text { (3.6) } \end{aligned}$	275 (0.188), 282 (0.249), 286 (0.241), 292 (0.281), 298 (0.19), $304(0.25), 316$ (0.045), 352 (0.13), 360 (0.119), 369 (0.159), 385 (0.059) $22.64 \mu \mathrm{~g} / \mathrm{ml}$ at 369 nm .
BaP-3,6-dione (3.68)	$250(0.26), 255(0.24), 263(0.211), 266(0.215), 286(0.089), 292(0.091), 298$ (0.05), 304 (0.059), 309 (0.058), 317 (0.082), 324 (0.072), 342 (0.105), $370(0.069)$ $35.04 \mu \mathrm{~g} / \mathrm{ml}$ at 345 nm .
BaP-7,8-dione (3.27)	$320(0.222), 338(0.43), 344(0.402), 352(0.515), 365(0.145)$ $6.34 \mu \mathrm{~g} / \mathrm{ml}$ at 352 nm .
BaP-11,12-dione (3.48)	$\begin{aligned} & 258(0.378), 276(0.81), 294(0.1), 308(0.071), 350(0.16), 385(0.038) \\ & 21.75 \mu \mathrm{~g} / \mathrm{ml} \text { at } 350 \mathrm{~nm} . \end{aligned}$
Dihydrodiols and triol cis-BaP-4,5dihydrodiol (1.83)	$260(0.241), 261(0.39), 268(0.38), 275(0.615), 285(0.09), 297(0.061), 300$ (0.071), $306(0.053), 313$ (0.071), $320(0.042), 326(0.069), 335(0.01)$ $26.52 \mu \mathrm{~g} / \mathrm{ml}$ at 326 nm .
$\begin{aligned} & \text { trans-9,10- } \\ & (3.12) \end{aligned}$	$\begin{aligned} & 260(0.155), 272(0.34), 275(0.348), 282(0.455), 287(0.371), 288(0.378), 297 \\ & (0.152), 302(0.212), 313(0.058), 318(0.075), 323(0.061), 332(0.151), 338(0.07), \\ & 348(0.282), 355(0.035) \\ & 11.06 \mu \mathrm{~g} / \mathrm{ml} \text { at } 348 \mathrm{~nm} . \end{aligned}$
$\begin{aligned} & \text { trans-4,5- } \\ & (2.79) \end{aligned}$	$\begin{aligned} & 260(0.455), 262(0.48), 264(0.47), 271(0.741), 290(0.076), 296(0.091), 303 \\ & (0.079), 308(0.092), 315(0.051), 322(0.09), 330(0.012) \\ & 31 \mu \mathrm{~g} / \mathrm{ml} \text { at } 322 \mathrm{~nm} . \end{aligned}$
$\begin{aligned} & \text { cis- } 7,8- \\ & (3.71) \end{aligned}$	$\begin{aligned} & 260(0.465), 269(0.118), 270(0.113), 277(0.111), 284(0.241), 289(0.161), 296 \\ & (0.325), 309(0.031), 335(0.181), 340(0.165), 351(0.43), 359(0.266), 368(0.577), \\ & 380(0.085), 390(0.022), 395(0.035), 400(0.018) \\ & 5.37 \mu \mathrm{~g} / \mathrm{ml} \text { at } 368 \mathrm{~nm} . \end{aligned}$
7,8,9-Tetrahydrotriol (ca.4)	$\begin{aligned} & 265(0.099), 269(0.195), 274(0.1), 281(0.36), 288(0.019), 310(0.035), 316(0.08) \text {, } \\ & 321(0.065), 331(0.21), 337(0.099), 347(0.32) \\ & \text { Approx. } 12.5 \mu \mathrm{~g} / \mathrm{ml} \text { at } 347 \mathrm{~nm} . \end{aligned}$

TABLE II
R_{F} VALUES
$\left.\begin{array}{llllll}\hline \text { Compound } & \begin{array}{l}\text { Solvent 1: } \\ \text { hexane- } \\ \text { benzene }(3: 1)\end{array} & \begin{array}{l}\text { Solvent 2: } \\ \text { dichloro- } \\ \text { methane }\end{array} & \begin{array}{l}\text { Solvent 3: } \\ \text { dichloromethane- } \\ \text { benzene (97:3) }\end{array} & \begin{array}{l}\text { Solvent 4: } \\ \text { ethyl acetate }\end{array} & \begin{array}{l}\text { Solvent 5: } \\ \text { dichloromethane- } \\ \text { ethanol (9:1) }\end{array} \\ \text { methanol-THF (19:1) }\end{array}\right]$

Table II shows that a sequence of dichloromethane-based solvents separates $\mathrm{B} a \mathrm{P}, \mathrm{B} a \mathrm{P}$-phenols, the quinones and the dihydrodiols. In solvent 1 (hexane-benzene, $3: 1$), $\mathrm{B} a \mathrm{P}$ has an R_{F} of 0.5 . The $\mathrm{B} a \mathrm{P}-\mathrm{phenols}$, quinones and the dihydrodiols have zero R_{F}. For large-scale metabolite mixtures, solvent 1 is suitable to remove unchanged $\mathrm{B} a \mathrm{P}$ on silica gel columns. In solvent 2 (dichloromethane) $\mathrm{B} a \mathrm{P}$ is at the solvent front with $R_{F} 0.87$, the blue fluorescent phenols have R_{F} values of $0.25-0.54$ and the colored quinone -yellow (4,5-, 1,6-, 6-12-), red (3,6-), violet (7,8-) or pink (11,12-)- have R_{F} values smaller than the phenols. The dihydrodiols have zero R_{F} in dichloromethane.

A mixture of 1-OH-, 3-OH-, and 6-OH-BaP, BaP-1,6-, 3,6- and 6,12-diones, and BP-trans-4,5-, -trans-9,10-, and -cis-7,8-dihydrodiol was run in dichloromethane. $1-\mathrm{OH}-$ and $3-\mathrm{OH}-\mathrm{B} a \mathrm{P}$ did not separate ($R_{F} 0.33$). 6-OH-BP separated out at $R_{F} 0.54$, and the three quinones formed two spots: (1) red, $R_{F} 0.05$ and (2) yellow, $R_{F} 0.15$. When this plate was developed in dichloromethane benzene (97:3), all three quinones separated out. The R_{F} values were as follows: quinones, $1,6-, 0.09 ;-3,6-, 0.06 ;-6,12-$, 0.16 . $1-\mathrm{OH}-$ and $3-\mathrm{OH}-\mathrm{B} a \mathrm{P}$ still remained mixed. The dihydrodiol moved very little (Table II). In a mixture of $3-\mathrm{OH}-, 7-\mathrm{OH}-$ and $9-\mathrm{OH}-\mathrm{B} a \mathrm{P}$, the quinones and the dihydrodiols and the phenols separated well in dichloromethane-benzene (97:3). R_{F} values: $3-\mathrm{OH}-, 0.44 ; 7-\mathrm{OH}-, 0.52$; and $9-\mathrm{OH}-, 0.33$. Quinone R_{F} values were as mentioned earlier.

The dihydrodiols were best separated with ethyl acetate. There was further resolution, including separation of cis- and trans-4,5-dihydrodiols in dichloromethane ethanol (9:1). In the latter solvent, even the triol moved. BaP-7,8dihydrodiol, the precursor of BPDE, separated out from the other dihydrodiols. R_{F} values: ethyl acetate, cis-4,5, and trans-4,5-dihydrodiol as a mixture, 0.72; trans-9,10-, 0.51 , and cis-7,8-, 0.57 . Values for the same plate after dichloromethane-ethanol ($9: 1$) were cis-4,5-, 0.78 ; trans-4,5-, 0.71 ; trans- $9,10-, 0.57$, and cis-7,8-, 0.66 . In methanol-tetrahydrofuran (solvent 6) the diols and the triol had large R_{F} values. We examined the separation of a mixture (as if from a metabolic experiment) of $185 \mu \mathrm{~g}$ $\mathrm{B} a \mathrm{P}$ with $1.8 \mu \mathrm{~g}$ each of $3-\mathrm{OH}-, 7-\mathrm{OH}-, 9-\mathrm{OH}-, 1,6-, 3,6-$, and 6,12 -diones and cis-4,5-, trans-9,10-, and cis-7,8-dihydrodiols. In dichloromethane-benzene (97:3), the phenols were a mixture at $R_{F} 0.53$, the colored quinones at 0.37 , the bluish dihydrodiols at 0.06 . and $\mathrm{B} a \mathrm{P}$ at $R_{F} 0.86$. The phenols, quinones and the dihydrodiols were extracted with ethyl acetate, dichloromethane and methanol. The solutions were concentrated and separated, as described above. A sequence of solvents 3, 4 and 5 (Table II) separates a mixture of oxygenated $\mathrm{B} a \mathrm{P}$ derivatives.

We recovered $51 \% \mathrm{~B} a \mathrm{P}$-trans-4,5-dihydrodiol with dichloromethane extraction. Either $\mathrm{B} a \mathrm{P}$ or $3-\mathrm{OH}-\mathrm{B} a \mathrm{P}$, after a chromatographic run, was extracted with dichloromethane and the mass spectrum determined without interference: BaP $\left(\mathrm{C}_{20} \mathrm{H}_{12}, 252.0931\right)$ and $3-\mathrm{OH}-\mathrm{B} a \mathrm{P}\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}, 268.0892\right)$. In Table I, UV spectra (maxima-minima) are given to allow reconstruction of the spectra. The last line indicates $\mu \mathrm{g} / \mathrm{ml}$ (factor) that produces an absorbance of 1 at the wavelength mentioned. Concentration (total $\mu \mathrm{g}$) $=\mathrm{ml} \times$ absorbance \times factor.

ACKNOWLEDGEMENT

This work was supported by funds provided by the Nebraska Department of Health through legislative bill 506.

REFERENCES

1 H. V. Gelboin, Physiol. Rev., 60 (1980) 1107.
2 C. R. Raha, Indian J. Biochem. Biophys., 9 (1972) 105.
3 C. R. Raha, C. H. Gallagher, P. Shuhik and S. Peratt, J. Nat. Cancer Inst., 57 (1976) 33.
4 P. Sims, P. L. Grover, A. Swaisland, K. Pal and A. Hewer, Nature (London), 252 (1974) 326.
5 C. R. Raha, C. H. Gallagher and P. Shubik, Proc. Soc. Expectl. Biol. Med., 143 (1973) 531.
6 C. R. Raha, L. K. Keefer and J. Loo, J. Chem. Eng. Data, 18 (1973) 332.
7 J. K. Selkirk, R. G. Croy, P. P. Roller and H. V. Gelbuin, Cancer Res., 34 (1974) 3474.

